Anisotropic Adaptation for Transonic Flows with Turbulent Boundary Layers
نویسندگان
چکیده
Simulation of wall-bounded turbulent flows poses significant challenges and requires tightly controlled mesh spacing and structure near the walls. Semi-structured or hybrid meshes are often used for turbulent boundary layer flows. These meshes not only account for complex geometry but also maintain highly anisotropic, graded and layered elements near the walls. However, for engineering flow problems the mesh spacing required to achieve a given level of accuracy cannot be determined a priori and therefore, an adaptive approach becomes essential. For wall-bounded turbulent flows, such an approach must incorporate the structure of the turbulent boundary layer and associated flow physics in order to guide the adaptive process. This paper introduces a new approach for boundary layer adaptivity, wherein flow physics indicators are used in combination with interpolation-based or numerical error indicators. The effectiveness of the current technique is demonstrated by applying them to two aerodynamic
منابع مشابه
A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملBoundary Layer Adaptivity for Transonic Turbulent Flows
Simulations of turbulent flows are challenging and require tight and varying mesh spacings near the walls that depend on the turbulence models used. Semi-structured meshes are often used in the turbulent wall boundary layers due to their ability to be strongly graded and anisotropic. To reduce the discretization errors in the solution, an adaptive approach becomes essential due to the lack of g...
متن کاملAnisotropic Mesh Adaptation for Transonic and Supersonic Flow Simulation
We present an efficient tool for the numerical simulation of high speed flows in two and threedimensional domains. The space discretization is carried out with the finite volume method on unstructured triangular and tetrahedral meshes. In order to achieve sufficiently accurate capturing of shock waves, we have applied the anisotropic mesh adaptation technique which seems to be very suitable for...
متن کاملSimulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition
A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...
متن کاملTransonic Turbulent Flow Simulation using Pressure-Based Method and Normalized Variable Diagram
A pressure-based implicit procedure to solve the Euler and Navier-Stokes equations on a nonorthogonal mesh with collocated finite volume formulation is described. The boundedness criteria for this procedure are determined from Normalized Variable diagram (NVD) scheme.The procedure incorporates the ε−k eddy-viscosity turbulence model. The algorithm is tested for inviscid and turbulent transonic ...
متن کامل